BOLTED

Een discussieplatform voor het
optimaliseren van het borgen van boutverbindingen

How does the Nord-Lock washer work?

 

Nord-Lock washers secure bolted joints with tension instead of friction. Watch this video and let us explain how it works!

► Read more: Introduction to Nord-Lock washers

► Video: Junker vibration test with Nord-Lock wedge-locking washers


Cheaper but better solution for tractors with washers

4 januari 2018
reactie

Tekst: Ekin Calisir

Foto: Hattat

First published in Bolted #2 2017.

CUSTOMER: HATTAT TRAKTÖR
HORSE POWER RANGE: 50–102
LOCATION: CERKEZKOY, TEKIRDAG, TURKEY
NORD-LOCK PRODUCTS: NORD-LOCK WASHERS NL8 AND NL10
PRODUCTS: TRACTORS FOR AGRICULTURAL APPLICATIONS

A producer of agricultural vehicles for close to 20 years, Turkish company Hattat Traktör knows that, when the going gets tough, it is the durability and reliability of their products that save the day. The company’s customers often deal with rugged terrain for long periods, racing against time to maintain productivity, so their machinery must be able to withstand tough conditions such as handling vibration.

Early in 2017, when Hattat Traktör was testing a new tractor model, they realized that the joints on the air compressor–engine connection bracket were loosening because of vibration. According to the company’s vibration analysis, this problem could have been solved by a costly and time-consuming change in the bracket design, or by replacing the loosening bolts with stronger ones.

At this point, the company’s research and development department started looking for new components for their design. After days of research and evaluation, they found Nord-Lock washers, which had the potential to save them from a more costly solution.

During the tests, Nord-Lock washers proved that they could solve the problem, and this solution was much cheaper than having to change the bracket design. With Nord-Lock washers in place, the vibration caused no more loosening, to the relief of Hattat Traktör customers, who can now rely on their red tractors, even under the harshest conditions.

The history of the bolt

20 december 2017
reactie

Tekst: Alannah Eames

Foto: Illustration: Kent Zeiron

At first glance, a bolt may seem like a very simple item that holds things together. But dig a bit deeper and you’ll realise there’s more behind seemingly insignificant bolt and screws than first meets the eye. Without them, all our gadgets and machines would fall to pieces.

History of the bolt drawings

First published in Bolted #2 2012.

Bolts are one of the most common elements used in construction and machine design. They hold every­thing together – from screws in electric toothbrushes and door hinges to massive bolts that secure concrete pillars in buildings. Yet, have you ever stopped to wonder where they actually came from?

While the history of threads can be traced back to 400 BC, the most significant developments in the modern day bolt and screw processes were made during the last 150 years. Experts differ as to the origins of the humble nut and bolt. In his article “Nuts and Bolts”, Frederick E. Graves argues that a threaded bolt and a matching nut serving as a fastener only dates back to the 15th century. He bases this conclusion on the first printed record of screws appearing in a book in the early 15th century.

However, Graves also acknowledges that even though the threaded bolt dates back to the 15th century, the unthreaded bolt goes back to Roman times when it was used for “barring doors, as pivots for opening and closing doors and as wedge bolts: a bar or a rod with a slot in which a wedge was inserted so that the bolt could not be moved.” He also implies that the Romans developed the first screw, which was made out of bronze, or even silver. The threads were filed by hand or consisted of a wire wound around a rod and soldered on.

According to bolt expert Bill Eccles’ research, the history of the screw thread goes back much further. Archimedes (287 BC–212 BC) developed the screw principle and used it to construct devices to raise water. However, there are signs that the water screw may have originated in Egypt before the time of Archimedes. It was constructed from wood and was used to irrigate
land and remove bilge water from ships. “But many consider that the screw thread was invented around 400 BC by [Greek philosopher] Archytas of Tarentum, who has often been called the founder of mechanics and considered a contemporary of Plato,” Eccles writes on his website.

The history can be broken down into two parts: the threads themselves that date back to around 400 BC when they were used for items such as a spiral for lifting water, presses for grapes to make wine, and the fasteners themselves, which have been in use for around 400 years.

Moving forward to the 15th century, Johann Gutenberg used screws in the fastenings on his printing presses. The tendency to use screws gained momentum with their use being extended to items such as clocks and armour. According to Graves, Leonardo da Vinci’s notebooks from the late 15th and early 16th centuries include several designs for screw-cutting machines.

What the majority of researchers on this topic do agree on, though, is that it was the Industrial Revolution that sped up the development of the nut and bolt and put them firmly on the map as an important component in the engineering and construction world.

The “History of the Nut and Bolt Industry in America” by W.R. Wilbur in 1905 acknowledges that the first machine for making bolts and screws was made by Besson in France in 1568, who later introduced a screw-cutting gauge or plate to be used on lathes. In 1641, the English firm, Hindley of York, improved this device and it became widely used.

Across the Atlantic in the USA, some of the documented history of the bolt may be found in the Carriage Museum of America. Nuts on vehicles built in the early 1800s were flatter and squarer than later vehicles, which had chamfered corners on the nuts and the flush was trimmed off the bolts. Making bolts at this time was a cumbersome and painstaking process.

Initially, screw threads for fasteners were made by hand but soon, due to a significant increase in demand, it was necessary to speed up the production process. In Britain in 1760, J and W Wyatt introduced a factory process for the mass production of screw threads. However, this milestone led to another challenge: each company manufactured its own threads, nuts and bolts so there was a huge range of different sized screw threads on the market, causing problems for machinery manufacturers.

It wasn’t until 1841 that Joseph Whitworth managed to find a solution. After years of research collecting sample screws from many British workshops, he suggested standardising the size of the screw threads in Britain so that, for example, someone could make a bolt in England and someone in Glasgow could make the nut and they would both fit together. His proposal was that the angle of the thread flanks was standardised at 55 degrees, and the number of threads per inch, should be defined for various diameters.
While this issue was being addressed in Britain, the Americans were trying to do likewise and initially started using the Whitworth thread.

In 1864, William Sellers proposed a 60 degree thread form and various thread pitches for different diameters. This developed into the American Standard Coarse Series and the Fine Series. One advantage the Americans had over the British was that their thread form had flat roots and crests. This made it easier to manufacture than the Whitworth standard, which had rounded roots and crests. It was found, however, that the Whitworth thread performed better in dynamic applications and the rounded root of the Whitworth thread improved fatigue performance.

During World War I, the lack of consistency between screw threads in different countries became a huge obstacle to the war effort; during World War II it became an even bigger problem for the Allied forces. In 1948, Britain, the USA and Canada agreed on the Unified thread as the standard for all countries that used imperial measurements. It uses a similar profile as the DIN metric thread previously developed in Germany in 1919. This was a combination of the best of the Whitworth thread form (the rounded root to improve fatigue performance) and the Sellers thread (60 degree flank angle and flat crests). However, the larger root radius of the Unified thread proved to be advantageous over the DIN metric profile. This led to the ISO metric thread which is used in all industrialised countries today.

Those working in the industry have witnessed much fine-tuning of bolts during recent decades. “When I started in the industry 35 years ago the strength of the bolts was not as fully defined as it is today,” recalls Eccles. “With the introduction of the modern metric property classes and the recent updates to the relevant ISO standards, the description of a bolt’s strength and the test methods used to establish their properties is now far better defined.”

As the raw materials industry has become more sophisticated, the DNA of bolts has changed from steel to other more exotic materials to meet changing industry needs.

Over the last 20 years there have been developments in nickel-based alloys that can work in high temperature environments such as turbochargers and engines in which steel doesn’t perform as well. Recent research focuses on light metal bolts such as aluminum, magnesium and titanium.

Today’s bolt technology has come a long way since the days when bolts and screws were made by hand and customers could only choose between basic steel nuts and bolts. These days, companies like Nord-Lock have invented significant improvements in bolting technology, including wedge-locking systems. Customers can select pre-assembled zinc flake coated or stainless steel washers, wheel nuts designed for flat-faced steel rims, or combi bolts, which are customised for different applications. The acquisition of US company Superbolt Inc. and Swiss company P&S Vorspannsysteme AG (today Nord-Lock AG) has added bolting products used in heavy industry, such as offshore, energy, and mining, to Nord-Lock’s portfolio, taking a huge step in becoming a world leader in bolt securing.

There is also much more emphasis now on analysing joints. “In the past, people used to decide upon a certain size of fastener based on their experience alone. And, fingers crossed, it would work,” Eccles explains. “Nowadays, people focus more on analysis and making sure things work before products are built and sent out into the market.”

 

Video: Comparison of common bolt locking methods

Video: Tightening large bolts with only hand tools

Installing a Bolt Tensioner from Boltight

Designed with the benefit of more than 30 years experience in the field, Boltight has created a range of tools to meet the challenge of today’s bolt tensioning requirements.

Just watch how easy it is to install these tensioners!

► Click here for more information about Boltight

No more loose screws on giant quay cranes

29 november 2017
reactie

Tekst: Roxana Ortiz

Foto: Paceco

First published in Bolted #2 2017.

CUSTOMER: PACECO ESPAÑA S.A
PRODUCTS: QUAY CRANES, YARD CRANES, SERVICES AND SYSTEMS FOR CONTAINER HANDLING
ESTABLISHED: 1967
SHAREHOLDERS: MITSUI GROUP AND URSSA, S. COOP.
NORD-LOCK PRODUCT: NORD-LOCK 20 / NL20

Offering cranes, services and systems to the container-handling industry, engineering company Paceco España (Spain) must adjust to its customers’ needs. As ships get bigger, quay and yard cranes must increase height and reach, while also becoming more efficient. Today, Paceco España can load and offload ships from 25 container lines. The company currently produces one of the largest and most efficient cranes on the market, the Portainer Malaccamax, which maximally offers a 72.5-metre outreach, a 52.5-metre clearance under spreader, and a 30.48-metre rail span.

Paceco España first connected with Nord-Lock in 2009, when there was a problem with one of the company’s quay cranes. The crane, with a 65-ton load capacity, had problems with the fixing of the gantry reducers – the gearboxes that move the quay crane along the dock. During operation, the fixing screws vibrated loose.

During their problem analyses, Paceco España’s engineers connected with Nord-Lock and when it presented a solution, Paceco España was pleasantly surprised. “We have been using their washers since 2009, and haven’t had any problems with bolted connections being subject to vibrations since then,” says engineer Pelayo Bobes. “With Nord-Lock washers, we have been able to provide total customer satisfaction and in turn saved both money and time.”

Understanding the markings on nuts and bolts

22 november 2017
reactie

Tekst: Damien Thomas

First published in Bolted #2 2017.

Q: What do the markings on bolts and nuts mean?
A:  Bolt heads and nuts are often marked with numbers, letters, dashes, slashes, dots, or an assortment of other marks. Fasteners commonly have two different markings: a unique manufacturer identification symbol – such as letters or an insignia – and information about the fastener strength. Such markings differ based on how the fasteners were made. See the table for the alloyed steel metric and stainless-steel metric fasteners that comply with ISO standards. UNC thread fasteners mainly comply with ASTM standards.

Due to lack of space, markings can be missing on smaller sizes, such as those with diameters below M5 according to ISO 898-1. However, the bolt class must be marked on the head above this size.

 

ASK THE EXPERTS
Do you have a question about bolt securing?
Put the Nord-Lock experts to the test.
Email your questions about bolt securing to
experts@nord-lock.com
Q: What do the markings on bolts and nuts mean?
A:  Bolt heads and nuts are often marked with numbers, letters, dashes, slashes, dots, or an assortment of other marks. Fasteners commonly have two different markings: a unique manufacturer identification symbol – such as letters or an insignia – and information about the fastener strength. Such markings differ based on how the fasteners were made. See the table to the right for the alloyed steel metric and stainless-steel metric fasteners that comply with ISO standards. UNC thread fasteners mainly comply with ASTM standards.Due to lack of space, markings can be missing on smaller sizes, such as those with diameters below M5 according to ISO 898-1. However, the bolt class must be marked on the head above this size.

ASK THE EXPERTS
Do you have a question about bolt securing?
Put the Nord-Lock experts to the test.
Email your questions about bolt securing to
experts@nord-lock.com

Hydropower: Relying on Superbolt for 30 years

1 november 2017
reactie

Tekst: Chad Henderson

Foto: John Kelly

When it comes to long-term Superbolt users, American Mike Bruno is hard to beat. More than 30 years ago, he was involved in one of the earliest installations of Superbolt tensioners in a hydropower turbine. Today, he continues to praise the performance of these tensioners. Here, he shares some inspirational insights.

First published in Bolted #2 2017.

You first worked with Superbolt tensioners at Diablo Dam in 1984. How did that come about?
“I was a machinist working at Seattle City Light, the electric utility for Seattle. We worked out of the machine shop down there, and we would go up and be labour support at Diablo Dam. In 1984, they were doing a stator-rotor inspection on the turbine, so they had to remove the rotor; that involves taking the thrust bearing apart, which is mounted on the turbine shaft. It is very important that the thrust block is perpendicular to the shaft within less than one-thousandth of an inch. Otherwise, it will have run-out and wobble.”

How did the Superbolt tensioners help with that?
“Back then, to get the right tension in the bolts, you had to heat the bolts so they would elongate, do the installation, and then wait for them to cool overnight. If the thrust bearing wasn’t sitting right on top of the shaft, you had to do it all over.

“The engineers at Diablo Dam had been in contact with Superbolt, and they modified the bolts so you didn’t have to go through this long process. Instead, we could tighten up those little bolts. If the thrust bearing wasn’t exactly perpendicular, you just tweaked the bolts on the opposite side. It was a very labour-saving modification.”

Today, you work at Wells Dam. What do you do there?

“I’ve been with the Wells Hydroelectric Project for about 17 years, managing and monitoring the project. What I’ve always enjoyed about my work is that every day there are new challenges or something that you’ve got to fix. We’ve got air systems, electrical systems, mechanical systems, hydraulic systems – all these different auxiliary systems that feed the turbines that run 24 hours a day.”

How has the dam been modernized over the years?
“One of the ways that it has been modernized is that we have installed PLCs on the majority of our alarm systems. Today, we have over 2,500 alarm points on different systems. This allows us to set more parameters for the alarm points, and we can also trend over time and compare with different machines. If something is starting to fail, you can set up a parameter to get an alarm so you can look into it before the failure actually happens.

“We are also using Superbolt tensioners when rebuilding our turbines. They’re being used in the load screws that hold the turbine bearing shoes in place, and in our turbine’s outer head cover, where you can’t access the bolts with a big wrench because it’s close quarters. They’re very reliable.”

FACTS: MIKE BRUNO
TITLE: Project Superintendent, Wells Hydroelectric Project, Douglas County Public Utility district
AGE: 60
LIVES: Chelan, Washington
BACKGROUND: Has a degree in industrial technology from Shoreline College; also studied at Cogswell College. Worked at Seattle City Light as a hydro machinist and foreman until 1990, then as a mechanical supervisor for the Skagit River Hydroelectric Project until 2000. Since then with Wells Hydroelectric Project.
PASSION: Married with three grown daughters, two granddaughters. Enjoys bow hunting and playing golf.

Hydraulic tensioning tool for nuclear reactor pressure vessel

Doosan Heavy Industries & Construction required a bolt tensioning solution to tighten nuclear reactor pressure vessel stud bolts. Boltight was contacted to design a hydraulic tensioning tool to achieve a predetermined bolt elongation, without exceeding the reactor head’s maximum allowable bearing stress.

The required bolt load was critically high (14,500 kN), and the space envelope was very small – the radial space available to install and operate the tensioner was particularly tight.

A tensioning system was designed to accommodate this high preload capacity within the space available. In realising these tools, Boltight engineers also incorporated a hydraulic piston retraction function into the design; to enable the equipment to be reset quickly, reducing operator fatigue. To compensate for dynamic joint behaviour, a spherical reaction nut and piston interface was integrated to accommodate any bending effects in the event of flange rotation.

Various safety mechanisms were incorporated to protect both the tools and the operators. Pressure relief valves were installed, and a floating gearbox design was engineered to avert damage should nut misalignment occur. The gearbox directly interfaced the geared nut which negated the need for a costly, heavy socket, and provided the necessary torque to rotate the nut.

Boltight were able to supply a complicated, bespoke design to exacting standards and achieved the tight delivery period set down by the client.

► Watch: Installation of Boltight bolt tensioner